Open Access
Candida albicans estrogen-binding protein gene encodes an oxidoreductase that is inhibited by estradiol.
Author(s) -
Nahid D. Madani,
Peter J. Malloy,
Pilar RodríguezPombo,
Aruna V. Krishnan,
David Feldman
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.3.922
Subject(s) - candida albicans , biology , microbiology and biotechnology , amino acid , biochemistry , peptide sequence , nucleic acid sequence , corpus albicans , gene , genetics
Candida albicans, the most common fungal pathogen of humans, possesses an estrogen-binding protein (EBP) that binds mammalian estrogens with high affinity. We report here the cloning and complete nucleotide sequence of a gene encoding a C. albicans EBP. Amino acid sequences obtained from cyanogen bromide fragments of purified EBP were used to design oligonucleotide primers for PCR. An 800-bp product was amplified and used to screen a C. albicans genomic library. A clone was isolated containing an insert with an open reading frame of 1221 nt capable of encoding a protein with 407 amino acids and having a calculated molecular mass of 46,073 Da, the estimated size of EBP. The cloned gene, expressed in Escherichia coli as a lacZ fusion protein, demonstrated high-affinity binding for estradiol and a competition profile comparable to C. albicans wild-type EBP. Northern blots of C. albicans RNA revealed a single transcript of approximately 1600 nt, whereas Southern blots identified three hybridizing fragments. Computer searches of data bases showed that EBP shares a 46% amino acid identity with the old yellow enzyme, an oxidoreductase from Saccharomyces cerevisiae, but was unrelated to the human estrogen receptor as previously speculated. In addition, a 51-amino acid region of EBP is highly conserved among a group of flavoproteins including old yellow enzyme. Expressed EBP was shown to exhibit oxidoreductase activity that could be inhibited by 17 beta-estradiol in vitro. In conclusion, the EBP from C. albicans has no evident homology to the mammalian steroid receptor superfamily but appears to be a member of a recently identified family of flavoproteins.