
Dollo's law and the death and resurrection of genes.
Author(s) -
Charles R. Marshall,
Elizabeth C. Raff,
Rudolf A. Raff
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.25.12283
Subject(s) - gene , biology , genetics , evolutionary biology
Dollo's law, the concept that evolution is not substantively reversible, implies that the degradation of genetic information is sufficiently fast that genes or developmental pathways released from selective pressure will rapidly become nonfunctional. Using empirical data to assess the rate of loss of coding information in genes for proteins with varying degrees of tolerance to mutational change, we show that, in fact, there is a significant probability over evolutionary time scales of 0.5-6 million years for successful reactivation of silenced genes or "lost" developmental programs. Conversely, the reactivation of long (> 10 million years)-unexpressed genes and dormant developmental pathways is not possible unless function is maintained by other selective constraints; the classic example of the resurrection of "hen's teeth" is most likely an experimental artifact, and the experimental reactivation of the Archaeopteryx limb developmental program has been shown to be a misinterpretation. For groups undergoing adaptive radiations, lost features may "flicker" on and off, resulting in a distribution of character states that does not reflect the phylogeny of the group.