
Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs.
Author(s) -
Paul R. Gardner,
Dee-dee H. Nguyen,
Carl W. White
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.25.12248
Subject(s) - aconitase , hyperoxia , fluoroacetate , citric acid cycle , chemistry , citric acid , biochemistry , oxygen , mitochondrion , enzyme , organic chemistry
The effect of hyperoxia on activity of the superoxide-sensitive citric acid cycle enzyme aconitase was measured in cultured human epithelial-like A549 cells and in rat lungs. Rapid and progressive loss of > 80% of the aconitase activity in A549 cells was seen during a 24-hr exposure to a PO2 of 600 mmHg (1 mmHg = 133 Pa). Inhibition of mitochondrial respiratory capacity correlated with loss of aconitase activity in A549 cells exposed to hyperoxia, and this effect could be mimicked by fluoroacetate (or fluorocitrate), a metabolic poison of aconitase. Exposure of rats to an atmospheric PO2 of 760 mmHg or 635 mmHg for 24 hr caused respective 73% and 61% decreases in total lung aconitase activity. We propose that early inactivation of aconitase and inhibition of the energy-producing and biosynthetic reactions of the citric acid cycle contribute to the sequelae of lung damage and edema seen during exposure to hyperoxia.