z-logo
open-access-imgOpen Access
Analysis of patterns of DNA sequence variation in flanking and coding regions of murine germ-line immunoglobulin heavy-chain variable genes: evolutionary implications.
Author(s) -
Harald S. Rothenfluh,
Adrian Gibbs,
Robert V. Blanden,
Edward J. Steele
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.25.12163
Subject(s) - biology , genetics , gene , coding region , pseudogene , germline , dna , immunoglobulin heavy chain , genome
We analyzed the DNA sequence structure of the 5' flanking and coding regions of 52 VH186.2-related germ-line genes isolated by PCR from C57BL/6J and BALB/c mice. The aligned coding regions display hypervariable and conserved regions corresponding to some of the complementarity-determining regions (CDRs) and framework regions (FRs) found in somatically mutated rearranged immunoglobulin variable genes. Most of the coding regions (88.5%) display open reading frames, strongly suggesting positive selection by antigen. Phylogenetic comparisons of putative transcribed regions versus 5' nontranscribed regions show that they have evolved very differently. Inspection of the 52 murine VH186.2-related DNA sequences (as well as other vertebrate germ-line V sequences reported in the literature) reveals clusters of insertion and deletion events bracketing the transcription/coding unit. These data strongly suggest hyperrecombination events targeting the putative transcription/coding sequence. Given that the DNA of unrearranged germ-line V elements cannot be the direct target for "natural-selection" antigen-binding forces (since V elements are only expressed somatically when rearranged in a mature lymphocyte), it is difficult to explain how these nonrandom sequence variations appear in the germ-line DNA. A number of molecular genetic processes are considered, including antigen-driven soma-to-germ-line gene feedback operative during vertebrate germ-line V gene evolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here