z-logo
open-access-imgOpen Access
Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes.
Author(s) -
Jing Kang,
Alexander Leaf
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.21.9886
Subject(s) - polyunsaturated fatty acid , docosahexaenoic acid , arachidonic acid , eicosapentaenoic acid , linoleic acid , fatty acid , lauric acid , oleic acid , stearic acid , biochemistry , chemistry , medicine , myocyte , contraction (grammar) , endocrinology , biology , enzyme , organic chemistry
Because of the ability of certain long-chain polyunsaturated fatty acids (PUFAs) to prevent lethal cardiac arrhythmias, we have examined the effects of various long-chain fatty acids on the contraction of spontaneously beating, isolated, neonatal rat cardiac myocytes. The omega 3 PUFA from fish oils, eicosapentaenoic acid [EPA; C20:5 (n-3)] and docosahexaenoic acid [DHA; C22:6 (n-3)], at 2-10 microM profoundly reduced the contraction rate of the cells without a significant change in the amplitude of the contractions. The fatty acid-induced reduction in the beating rate could be readily reversed by cell perfusion with fatty acid-free bovine serum albumin. Addition of either oxygenase inhibitors or antioxidants did not alter the effect of the fatty acids. Arachidonic acid [AA; C20:4 (n-6)] produced two different effects on the beating rate, an increase or a decrease, or it produced no change. In the case of the increased or unchanged beating rate in the presence of AA, addition of AA oxygenase inhibitors subsequently reduced the contraction rate. The nonmetabolizable AA analog eicosatetraynoic acid (ETYA) always reduced the beating rate, as did EPA or DHA. Two other PUFAs, linoleic acid [C18:2 (n-6)] and linolenic acid [C18:3 (n-3)] also exhibited similar but less potent effects compared with EPA or ETYA. In contrast, neither the monounsaturated fatty acid oleic acid [C18:1 (n-9)] nor the saturated fatty acids stearic acid (C18:0), myristic acid (C14:0), and lauric acid (C12:0) affected the contraction rate. The inhibitory effect of these PUFAs on the contraction rate was similar to that produced by the class I antiarrhythmic drug lidocaine. The fatty acids that are able to reduce the beating rate, particularly EPA and DHA, could effectively prevent and terminate lethal tachyarrhythmias (contracture/fibrillation) induced by high extracellular calcium concentrations or ouabain. These results suggest that free PUFAs can suppress the automaticity of cardiac contraction and thereby exert their antiarrhythmic effects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here