z-logo
open-access-imgOpen Access
Conformational effects of environmentally induced, cancer-related mutations in the p53 protein.
Author(s) -
Paul W. BrandtRauf,
Regina Monaco,
Matthew R. Pincus
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.20.9262
Subject(s) - mutant , mutation , peptide sequence , wild type , gene , conformational epitope , peptide , biology , epitope , amino acid , protein structure , mutant protein , biochemistry , genetics , antibody
The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. A considerable number of environmentally induced, cancer-related p53 mutations in human tumors have been found in a highly conserved proline-rich sequence of the p53 protein encompassed by amino acid residues 147-158. Using conformational energy analysis based on ECEPP (Empirical Conformational Energy for Peptides Program), we have determined the low-energy three-dimensional structures for this dodecapeptide sequence for the human wild-type p53 protein and three environmentally induced, cancer-related mutant p53 proteins with His-151, Ser-152, and Val-154, respectively. The results suggest that the wild-type sequence adopts a well-defined low-energy conformation and that the mutant peptides adopt well-defined conformations that are distinctly different from the conformation of the wild-type peptide. These results are consistent with experimental conformational studies demonstrating altered detectability of antigenic epitopes in wild-type and mutant p53 proteins. These results suggest that the oncogenic effects of these environmentally induced, cancer-related, mutant p53 proteins may be mediated by distinct local conformational changes in the protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here