z-logo
open-access-imgOpen Access
Simulation of the diffusion and reaction of endogenously produced nitric oxide.
Author(s) -
Jr Jr Lancaster
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.17.8137
Subject(s) - paracrine signalling , autocrine signalling , diffusion , biophysics , nitric oxide , intracellular , chemistry , in vivo , nitric oxide synthase , endogeny , microbiology and biotechnology , biology , biochemistry , enzyme , thermodynamics , physics , receptor , organic chemistry
In spite of intense recent investigation of the physiological and pathophysiological roles of endogenously produced nitric oxide (.NO) in mammalian systems, little quantitative information exists concerning the diffusion of this small nonelectrolyte from its source (NO synthase) to its targets of action. I present here a conceptual framework for analyzing the intracellular and intercellular diffusion and reaction of free .NO, using kinetic modeling and calculations of the diffusibility of .NO and its reactions in aqueous solution based on published data. If the half-life of .NO is greater than approximately 25 msec and the rates of reaction of .NO with its targets are slower than its diffusion or reaction with O2 (for which there is experimental evidence in at least some systems), then (i) .NO acts in vivo in a mostly paracrine fashion for a collection of .NO-producing cells, (ii) .NO diffuses to significant concentrations at distances relatively far removed from a single .NO-producing cell, and (iii) localized sites of vascularization will scavenge .NO (and thus decrease its actions) at distances many cell diameters away from that site. These conclusions have important implications with regard to the mechanism of endothelium-dependent relaxation, the autocrine vs. paracrine actions of .NO, and the role of the spatial relationship between specific sites of .NO formation and neighboring blood vessels in .NO-effected and -affected neuronal signal transmission.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here