
Regulation of ROMK1 K+ channel activity involves phosphorylation processes.
Author(s) -
Carmel M. McNicholas,
Wenhui Wang,
Kevin Ho,
Steven C. Hebert,
Gerhard Giebisch
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.17.8077
Subject(s) - okadaic acid , dephosphorylation , phosphorylation , chemistry , phosphatase , biophysics , protein kinase a , biochemistry , patch clamp , adenosine triphosphate , potassium channel , protein subunit , homomeric , microbiology and biotechnology , biology , receptor , gene
An inwardly rectifying, ATP-regulated K+ channel with a distinctive molecular architecture, ROMK1, was recently cloned from rat kidney. Using patch clamp techniques, we have investigated the regulation of ROMK1 with particular emphasis on phosphorylation/dephosphorylation processes. Spontaneous channel rundown occurred after excision of membrane patches into ATP-free bath solutions in the presence of Mg2+. Channel rundown was almost completely abolished after excision of patches into either Mg(2+)-free bathing solutions or after preincubation with the broad-spectrum phosphatase inhibitor, orthovanadate, in the presence of Mg2+. MgATP preincubation also inhibited channel rundown in a dose-dependent manner. In addition, the effect of the specific phosphatase inhibitors okadaic acid (1 microM) and calyculin A (1 microM) was also investigated. The presence of either okadaic acid or calyculin A failed to inhibit channel rundown. Taken together, these data suggest that rundown of ROMK1 involves a Mg(2+)-dependent dephosphorylation process. Channel activity was also partially restored after the addition of MgATP to the bath solution. Addition of exogenous cAMP-dependent protein kinase A (PKA) catalytic subunit led to a further increase in channel open probability. Addition of Na2ATP, in the absence of Mg2+, was ineffective, suggesting that restoration of channel activity is a Mg(2+)-dependent process. Addition of the specific PKA inhibitor, PKI, to the bath solution led to a partial, reversible inhibition in channel activity. Thus, PKA-dependent phosphorylation processes are involved in the modulation of channel activity. This observation is consistent with the presence of potential PKA phosphorylation sites on ROMK1.