
Alterations in major histocompatibility complex association of myocarditis induced by coxsackievirus B3 mutants selected with monoclonal antibodies to group A streptococci.
Author(s) -
Sally A. Huber,
Albert Moraska,
Madeleine W. Cunningham
Publication year - 1994
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.91.12.5543
Subject(s) - biology , epitope , monoclonal antibody , coxsackievirus , virology , major histocompatibility complex , virus , myocarditis , serotype , antibody , antigen , mutant , microbiology and biotechnology , immunology , enterovirus , genetics , gene , medicine , cardiology
Three monoclonal antibodies (mAbs), 49.8.9, 36.2.2, and 54.2.8, made to the group A streptococcus M5 serotype identify crossreactive epitopes in cardiac tissues and also neutralize a highly myocarditic variant of coxsackievirus B3 (H3). Mutants of H3 were selected with these mAbs and evaluated for pathogenicity compared with the wild-type virus. H3 and the mutant variants selected with mAbs 36.2.2 (H3-36) and 54.2.8 (H3-54) induced severe myocarditis in DBA/2 (H-2d) and A/J (H-2a) male mice, whereas CBA (H-2k) mice were disease resistant. The virus variant isolated with mAb 49.8.9 (H3-49) was strikingly different and caused disease in CBA and A/J mice but not in DBA/2 animals, suggesting that the major histocompatibility complex association of the disease had been altered. This hypothesis was confirmed by using B10 congenic mice. In addition, T lymphocytes from the H3 and H3-49 virus-infected mice responded to distinctly different peptides in the streptococcal M protein, suggesting that certain epitopes of infectious agents which are shared with host tissues may be critical in determining disease susceptibility in genetically distinct individuals.