z-logo
open-access-imgOpen Access
Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology.
Author(s) -
Kathryn E. Luker,
J.L. Collier,
Eric W. Kolodziej,
Garland R. Marshall,
William E. Goldman
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.6.2365
Subject(s) - bordetella pertussis , muramyl dipeptide , peptide , biochemistry , microbiology and biotechnology , biology , chemistry , bacteria , genetics , in vitro
Tracheal cytotoxin (TCT) is a disaccharide-tetrapeptide released by Bordetella pertussis, the causative agent of pertussis (whooping cough). We have previously determined the structure of TCT to be GlcNAc-1,6-anhydro-MurNAc-L-Ala-gamma-D-Glu-meso-A2pm-D-Ala, where MurNAc = N-acetylmuramic acid and A2pm = diaminopimelic acid. Purified TCT reproduces the respiratory cytopathology observed during pertussis, including ciliostasis and extrusion of ciliated cells. We have tested structural analogs of TCT for their ability to reproduce native TCT toxicity in explanted hamster tracheal tissue and hamster trachea epithelial (HTE) cell cultures. Other investigators have evaluated many of these analogs, which are muramyl or desmuramyl peptides, for muramyl peptide activities such as immunopotentiation, induction of slow-wave sleep, and pyrogenicity. Four desmuramyl peptides were produced in our laboratory from B. pertussis peptidoglycan or by chemical synthesis, including unusual peptides containing alpha-aminopimelic acid in place of A2pm. Based on the relative ability of compounds to inhibit DNA synthesis in HTE cells, truncated analogs lacking A2pm entirely or lacking only the side-chain amine or carboxyl group of A2pm were less active than TCT by a factor of at least 1000. All active analogs included a native or near-native peptide moiety, independent of the presence, absence, or substitution of the sugar moiety. We conclude that the structural requirements for TCT toxicity differ considerably from those for most other muramyl peptide activities, in that the disaccharide moiety is irrelevant for toxicity and both the free amino and carboxyl groups of the A2pm side chain are required for activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here