
Constitutive transcription of the osteocalcin gene in osteosarcoma cells is reflected by altered protein-DNA interactions at promoter regulatory elements.
Author(s) -
Rita Bortell,
Thomas A. Owen,
Victoria Shalhoub,
Arianne Heinrichs,
Michael S. Aronow,
Cicile Rochette-Egly,
Yves Lutz,
Janet L. Stein,
Jane B. Lian,
Gary S. Stein
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.6.2300
Subject(s) - transactivation , biology , osteocalcin , calcitriol receptor , transcription factor , microbiology and biotechnology , osteosarcoma , promoter , transcriptional regulation , gene expression , gene , cancer research , genetics , alkaline phosphatase , biochemistry , enzyme
The bone-specific osteocalcin (OC) gene is transcribed only after completion of proliferation in normal diploid calvarial-derived osteoblasts during extracellular matrix mineralization. In contrast, the OC gene is expressed constitutively in both proliferating and nonproliferating ROS 17/2.8 osteosarcoma cells. To address molecular mechanisms associated with these tumor-related modifications in transcriptional control, we examined sequence-specific interactions of transactivation factors at key basal and hormone-responsive elements in the OC gene promoter. In ROS 17/2.8 cells compared to normal diploid osteoblasts, the absence of a stringent requirement for cessation of proliferation to support both induction of OC transcription and steroid hormone-mediated transcriptional modulation is reflected by modifications in transcription factor binding at (i) the two primary basal regulatory elements, the OC box (which contains a CCAAT motif as a central core) and the TATA/glucocorticoid-responsive element domain, and (ii) the vitamin D-responsive element. Particularly striking are two forms of the vitamin D receptor complex that are present in proliferating osteoblasts and osteosarcoma cells. Both forms of the complex are sensitive to vitamin D receptor antibody and retinoic X receptor antibody. After the down-regulation of proliferation, only the lower molecular weight complex is found in normal diploid osteoblasts. Both forms of the complex are present in nonproliferating ROS 17/2.8 cells with increased representation of the complex exhibiting reduced electrophoretic mobility that is phosphorylation-dependent.