z-logo
open-access-imgOpen Access
An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins.
Author(s) -
Qianjin Zhang,
Riccardo Gavioli,
George Klein,
Maria G. Masucci
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.6.2217
Subject(s) - peptide , cytotoxic t cell , biology , epitope , amino acid , peptide sequence , microbiology and biotechnology , antigen , human leukocyte antigen , sequence motif , major histocompatibility complex , biochemistry , in vitro , gene , genetics
T lymphocytes recognize their antigenic targets as peptides associated with major histocompatibility complex molecules. The HLA-A11 allele, a preferred restriction element for Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocyte responses, presents an immunodominant epitope derived from the EBV nuclear antigen 4. Subpicomolar concentrations of a synthetic nonamer peptide, IVTDFSVIK, corresponding to amino acids 416-424 of the EBV nuclear antigen 4 sequence, can sensitize phytohemagglutinin-stimulated blasts to lysis by EBV-specific HLA-A11-restricted cytotoxic T-lymphocytes. We show that micromolar concentrations of this peptide induce assembly and surface expression of HLA-A11 in an A11-transfected subline of the peptide transporter mutant cell line T2. Using the IVTDFSVIK peptide and a series of synthetic nonamer peptides, differing from the original sequence by single amino acid substitutions, we have defined a motif for HLA-A11-binding peptides. This predicts the presence of a hydrophobic amino acid in position 2, amino acids with small side chains in positions 3 and 6, and a lysine in position 9. Using this motif, we have identified a peptide in the carboxyl-terminal end of wild-type p53, ELNEALELK, which is able to induce HLA-A11 assembly as efficiently as the IVTDFSVIK viral peptide.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here