z-logo
open-access-imgOpen Access
Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection.
Author(s) -
Timothy F. Kowalik,
Bret A. Wing,
J. S. Haskill,
Jane Clifford Azizkhan,
Albert S. Baldwin,
EngShang Huang
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.3.1107
Subject(s) - electrophoretic mobility shift assay , enhancer , biology , microbiology and biotechnology , chloramphenicol acetyltransferase , kappa , p50 , gene , nfkb1 , antibody , reporter gene , gene expression , transcription factor , virology , biochemistry , genetics , linguistics , philosophy
Infection-induced activation of the human cytomegalovirus major immediate early enhancer/promoter has been shown to be regulated primarily by transcription factor NF-kappa B cis elements. However, the mechanism(s) by which human cytomegalovirus induces NF-kappa B activity is unknown. A study was therefore undertaken to determine how this virus would affect normal NF-kappa B regulation. Viral infection of fibroblasts resulted in the specific stimulation of promoters containing major histocompatibility complex NF-kappa B cis elements fused upstream of the chloramphenicol acetyltransferase reporter gene. Electrophoretic mobility shift assays of nuclear extracts derived from mock- and virus-infected cells showed dramatic and sustained increases in DNA-binding proteins specific for these NF-kappa B sequences. Experiments using MAD-3 I kappa B, a specific inhibitor of NF-kappa B, and antibodies directed against rel family members demonstrated that the induced binding activities contained p50 and p65 proteins but not c-rel. Northern analysis indicated maximal levels of p50 mRNA by 4 h postinfection, whereas p65 and MAD-3 I kappa B mRNA accumulation peaked at 48-72 h postinfection, suggesting different regulatory mechanisms for p50 and p65/I kappa B genes. Electrophoretic mobility shift assays with deoxycholate-treated cytoplasmic extracts demonstrated a 3- to 4-fold decrease in the cytosolic stores of NF-kappa B binding activity by 4 h postinfection. Western blots probed with antibodies directed against MAD-3 I kappa B or pp40 (a protein isolated from chicken with sequence and biochemical properties similar to those of MAD-3 I kappa B) indicated that a cross-reactive peptide of 39 kDa was no longer detectable after 24 h postinfection. These results demonstrate that the activation and maintenance of nuclear NF-kappa B DNA binding and enhancer activities upon human cytomegalovirus infection occurs by multiple mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here