
Importance of receptor occupancy, concentration differences, and ligand exchange in the insulin-like growth factor I receptor system.
Author(s) -
Peixin Zhong,
José Cara,
Howard S. Tager
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.24.11451
Subject(s) - heterotetramer , receptor , ligand (biochemistry) , chemistry , biophysics , stereochemistry , biochemistry , biology , protein subunit , gene
We have investigated by use of placental membranes the mechanisms through which insulin-like growth factor I (IGF-I) comes to be associated with its alpha 2 beta 2 receptor heterotetramer. Our results suggest that (i) at low ligand concentrations, the formation and disruption of IGF-I--receptor complexes are consistent with ligand binding de novo to empty receptors but not with equilibria involving ligand dissociation; (ii) at higher ligand concentrations, rapid exchange arising from the formation and collapse of bis-liganded receptors leads to a transiently perturbed receptor state; (iii) these nonclassical IGF-I receptor interactions depend on close communication between the alpha beta halves of the alpha 2 beta 2 holo-IGF-I receptor; and (iv) related processes based on ligand exchange have the potential for serving as biological sensors of changes in ligand concentration, while ordinary binding processes serve as sensors of ligand concentrations themselves. A model is presented in which one or two molecules of ligand can be bound to an alpha 2 beta 2 IGF-I receptor heterotetramer, new ligand becomes associated with receptor by exchanging for a previously bound molecule of IGF-I, and fluctuating changes in free-ligand concentration might lead to enhanced IGF-I function.