Open Access
Induction of long-term facilitation in Aplysia sensory neurons by local application of serotonin to remote synapses.
Author(s) -
Gregory A. Clark,
Eric R. Kandel
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.23.11411
Subject(s) - aplysia , neuroscience , neural facilitation , sensory system , facilitation , synapse , biology , sensory neuron , inhibitory postsynaptic potential , excitatory postsynaptic potential
Long-term synaptic facilitation at the connections of Aplysia sensory neurons onto their target cells involves alterations in gene expression. How then are the relevant cellular signals for the induction and expression of long-term synaptic changes conveyed between the nucleus and remote synaptic terminals? We have explored this question using a set of remote, peripheral terminals of siphon sensory cells, which are approximately 3 cm from the sensory cell body in the abdominal ganglion. We found that these remote synapses, like the proximal synapses previously studied in dissociated cell culture, can exhibit long-term facilitation 24 hr after cell-wide serotonin application. Furthermore, serotonin applications restricted to the remote synaptic terminals nevertheless produced long-term facilitation, indicating that signals generated in synaptic regions can trigger the long-term process, perhaps via retrograde signals to the nucleus to modify gene expression, followed by anterograde signals back to the terminal. Serotonin applications restricted to the cell body and proximal synapses of the sensory neuron also produced long-term facilitation at remote synapses, although to a lesser extent, suggesting that long-term facilitation is expressed cell-wide, but that superimposed on this cell-wide facilitation there appears to be a component that is synapse-specific.