z-logo
open-access-imgOpen Access
Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release.
Author(s) -
Timothy J. Turner,
Michael E. Adams,
Kathleen Dunlap
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.20.9518
Subject(s) - neurotransmitter , dopamine , glutamatergic , glutamate receptor , dopaminergic , neurosecretion , chemistry , biophysics , biology , neuroscience , biochemistry , receptor , central nervous system
The regulation of excitation-secretion coupling by Ca2+ channels is a fundamental property of the nerve terminal. Peptide toxins that block specific Ca2+ channel types have been used to identify which channels participate in neurotransmitter release. Subsecond measurements of [3H]-glutamate and [3H]dopamine release from rat striatal synaptosomes showed that P-type channels, which are sensitive to the Agelenopsis aperta venom peptide omega-Aga-IVA, trigger the release of both transmitters. Dopamine (but not glutamate) release was also controlled by N-type, omega-conotoxin-sensitive channels. With strong depolarizations, where neither toxin was very effective alone, a combination of omega-Aga-IVA and omega-conotoxin produced a synergistic inhibition of 60-80% of Ca(2+)-dependent dopamine release. The results suggest that multiple Ca2+ channel types coexist to regulate neurosecretion under normal physiological conditions in the majority of nerve terminals. P- and N-type channels coexist in dopaminergic terminals, while P-type and a omega-conotoxin- and omega-Aga-IVA-resistant channel coexist in glutamatergic terminals. Such an arrangement could lend a high degree of flexibility in the regulation of transmitter release under diverse conditions of stimulation and modulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here