
Identification of CD4 and major histocompatibility complex functional peptide sites and their homology with oligopeptides from human immunodeficiency virus type 1 glycoprotein gp120: role in AIDS pathogenesis.
Author(s) -
JF Zagury,
Jacky Bernard,
A. Achour,
A Astgen,
A Lachgar,
L Fall,
Claude Carelli,
W. J. Issing,
JP Mbika,
O Picard
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.16.7573
Subject(s) - biology , major histocompatibility complex , immune system , human leukocyte antigen , glycoprotein , peptide sequence , virology , t cell , antibody , antigen , immunology , microbiology and biotechnology , genetics , gene
CD4 molecules interact with class II major histocompatibility complex molecules as a critical costimulatory signal in CD4+ cell immune activation. CD4 also recognizes a specific region of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 forming a binding site for early stages of HIV-1 infection. We designed two software packages, AUTOMAT and CRITIC, which allowed us to identify similarities between regions of HIV-1 proteins and immunoregulatory protein sequences stored in data banks. In this report we have characterized (i) a pentapeptide, SLWDQ, found in both CD4 and HIV-1 gp120, which surprisingly had remained undetected in these two well-studied molecules until now, and (ii) an HLA sequence corresponding to the putative functional site of H2 I-A. We found that a region of gp120 (residues 254-263) known to be similar to a sequence in HLA class II beta chain overlaps this functional region. We showed experimentally that these two CD4 and HLA peptide segments inhibit CD4+ cell immune activation. There is strong inhibition (50% up to 80%) of immune activation by SLWDQ-containing gp120 segments and a lesser inhibition by the gp120 HLA-homologous segment. In addition, we found that SLWDQ induced in HIV-1-infected individuals a humoral (antibody) and cellular (cytotoxic T lymphocyte) immune reaction. We propose that these HIV-1 gp120 segments, together with the known CD4-binding region, may contribute to the HIV-1-induced immunosuppression by two mechanisms affecting CD4-HLA interaction during T-cell immune activation: autoimmune reaction toward CD4 and direct interference with the CD4-HLA costimulatory signal inducing CD4+ cell anergy with, as a consequence, generation of immunosuppression.