z-logo
open-access-imgOpen Access
Transmembrane signaling in human polymorphonuclear neutrophils: 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid modulates receptor agonist-triggered cell activation.
Author(s) -
Robert J. Smith,
James M. Justen,
Eldon G. Nidy,
Laurel M. Sam,
John E. Bleasdale
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.15.7270
Subject(s) - chemistry , biochemistry , receptor , microbiology and biotechnology , phospholipase c , g protein , signal transduction , superoxide , biology , enzyme
15(S)-Hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid (15-HETE) exerted a time- and concentration-dependent inhibition of superoxide anion (O2-) production and exocytosis of both azurophil and specific granule constituents from human polymorphonuclear neutrophils (PMN) stimulated with the receptor-specific agonists, N-formylmethionylleucylphenylalanine (FMLP), platelet-activating factor, and leukotriene B4, but not that elicited by phorbol 12-myristate 13-acetate. 15-HETE did not alter the binding of FMLP to its specific receptors on PMN but, rather, appeared to interfere with a subsequent process in signal transduction. Receptor-coupled production of inositol 1,4,5-trisphosphate (InsP3) and increases in cytosolic free calcium elicited with FMLP, platelet-activating factor, and leukotriene B4 were suppressed by 15-HETE. 15-HETE did not, however, inhibit the mobilization of 45Ca from intracellular stores elicited by the addition of InsP3 to permeabilized PMN. 15-HETE suppressed O2- production and increases in intracellular [Ca2+] induced when cell-surface receptors were bypassed and the PMN were activated directly by the guanine nucleotide-binding protein (G protein) activators aluminum fluoride (AlF4-) and mastoparan. 15-HETE, however, did not perturb all G protein functions because cAMP production in FMLP-activated PMN was essentially unaffected by 15-HETE. These data support the proposition that 15-HETE modulates receptor-triggered activation of PMN either by uncoupling G protein stimulation of phospholipase C or by directly inhibiting phospholipase C, thus inhibiting the InsP3-dependent rise in intracellular [Ca2+] that is prerequisite for PMN responsiveness to receptor agonists.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here