
The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece.
Author(s) -
Frazier T. Stevenson,
Stuart L. Bursten,
Christie Fanton,
Richard M. Locksley,
David H. Lovett
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.15.7245
Subject(s) - myristoylation , biochemistry , peptide sequence , lysine , biology , peptide , amino acid , immunoprecipitation , myristic acid , chemistry , microbiology and biotechnology , membrane , fatty acid , palmitic acid , gene
The cytokine interleukin 1 alpha (IL-1 alpha) is a critical mediator of the immune and inflammatory responses. A unique determinant of its activity as compared with IL-1 beta may be its association with the plasma membrane. While the biologic activity of "membrane IL-1" has been extensively reported, the mechanism of membrane binding remains unclear. We report that the N terminus of the 31-kDa IL-1 alpha precursor is myristoylated on specific internal lysine residues. Immunoprecipitation of [3H]myristic acid-radiolabeled human monocyte lysates with IgG antibodies to the 31-kDa IL-1 alpha precursor recovered a protein with the physicochemical properties of the IL-1 alpha N-terminal propiece (16 kDa, pI 4.45). Glycyl N-myristoylation of this protein is precluded by the absence of a glycine residue at position 2, suggesting that the propiece is myristoylated on epsilon-amino groups of lysine. To determine which lysine(s) are acylated, a series of synthetic peptides containing all lysines found in the IL-1 alpha N-terminal propiece were used in an in vitro myristoylation assay containing peptide, myristoyl-CoA, and monocyte lysate as enzyme source. Analysis of the reaction products by reverse-phase HPLC and gas-phase sequencing demonstrated the specific myristoylation of Lys-82 and Lys-83, yielding predominantly monoacylated product. A conserved sequence in the IL-1 beta propiece was myristoylated with at least 8-fold less efficiency. Acylation of the IL-1 alpha precursor by a previously unrecognized lysyl epsilon-amino N-myristoyl-transferase activity may facilitate its specific membrane targeting.