
The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum.
Author(s) -
Judith A. Partaledis,
V Berlin
Publication year - 1993
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.90.12.5450
Subject(s) - unfolded protein response , endoplasmic reticulum , tunicamycin , fkbp , biology , saccharomyces cerevisiae , messenger rna , microbiology and biotechnology , chaperone (clinical) , secretion , mutant , secretory protein , gene , biochemistry , medicine , pathology
The FKB2 gene of Saccharomyces cerevisiae encodes a homolog of mammalian FKBP-13, an FK506/rapamycin-binding protein that localizes to the lumen of the endoplasmic reticulum (ER). We have found that FKB2 mRNA levels increase in response to the accumulation of unfolded precursor proteins in the ER. FKB2 mRNA levels are elevated in cells blocked in N-glycosylation--i.e., in wild-type cells treated with tunicamycin and in the sec53-6 mutant grown at the nonpermissive temperature. Mutations that block other steps in secretion have no effect on FKB2 mRNA levels, indicating that increases in FKB2 mRNA are not the consequence of a general block in secretion. The increase in FKB2 mRNA in response to unfolded proteins in the ER is mediated through a 21-bp unfolded-protein response (UPR) element located in the 5' noncoding region of FKB2. UPR elements present in other ER chaperone genes, such as yeast KAR2 (BiP), mammalian GRP78 (BiP), and GRP94, function in an analogous manner to that in FKB2. As with KAR2, FKB2 mRNA levels are also elevated by heat shock. The similarities in the regulation of FKB2 and other ER chaperone genes suggest that FKBP-13 may play a role in protein trafficking in the ER.