
A conserved double-stranded RNA-binding domain.
Author(s) -
Daniel St Johnston,
Nathaniel H. Brown,
Joseph G. Gall,
Michael F. Jantsch
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.22.10979
Subject(s) - biology , rna silencing , rna binding protein , rna , genetics , peptide sequence , binding domain , rnase p , binding site , consensus sequence , gene , computational biology , microbiology and biotechnology , rna interference
We have identified a double-stranded (ds)RNA-binding domain in each of two proteins: the product of the Drosophila gene staufen, which is required for the localization of maternal mRNAs, and a protein of unknown function, Xlrbpa, from Xenopus. The amino acid sequences of the binding domains are similar to each other and to additional domains in each protein. Database searches identified similar domains in several other proteins known or thought to bind dsRNA, including human dsRNA-activated inhibitor (DAI), human trans-activating region (TAR)-binding protein, and Escherichia coli RNase III. By analyzing in detail one domain in staufen and one in Xlrbpa, we delimited the minimal region that binds dsRNA. On the basis of the binding studies and computer analysis, we have derived a consensus sequence that defines a 65- to 68-amino acid dsRNA-binding domain.