
Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.
Author(s) -
Y Liu,
Ali Roghani,
Robert H. Edwards
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.19.9074
Subject(s) - chinese hamster ovary cell , reserpine , neurotoxin , biology , microbiology and biotechnology , toxin , transfection , intracellular , chemistry , hamster , biochemistry , pharmacology , gene , receptor
The toxin N-methyl-1,2,3,6-tetrahydropyridine produces a model of neural degeneration very similar to idiopathic Parkinson disease. To understand the cellular mechanisms that modulate susceptibility to its active metabolite N-methyl-4-phenylpyridinium (MPP+), we have transfected a cDNA expression library from the relatively MPP(+)-resistant rat pheochromocytoma PC12 cells into MPP(+)-sensitive Chinese hamster ovary (CHO) fibroblasts. Selection of the stable transformants in high concentrations of MPP+ has yielded a clone extremely resistant to the toxin. Reserpine reverses the resistance to MPP+, suggesting that a transport activity protects against this form of toxicity, perhaps by sequestering the toxin within an intracellular compartment. In support of this hypothesis, dopamine loaded into the CHO transformant shows a localized distribution that is distinct from the pattern observed in wild-type cells and is also reversed by reserpine.