z-logo
open-access-imgOpen Access
Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice.
Author(s) -
Margaret L. Kripke,
Pat Cox,
Lori Alas,
Daniel B. Yarosh
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.16.7516
Subject(s) - pyrimidine dimer , immunosuppression , endonuclease , immune system , dna damage , dna repair , biology , dna , immunology , cancer research , chemistry , biochemistry
Exposing the skin of mice to UV radiation interferes with the induction of delayed and contact hypersensitivity immune responses initiated at nonirradiated sites. The identity of the molecular target in the skin for these immunosuppressive effects of UV radiation remains controversial. To test the hypothesis that DNA is the target for UV-induced systemic immunosuppression, we exposed C3H mice to UV radiation and then used liposomes to deliver a dimer-specific excision repair enzyme into the epidermis in situ. The application of T4 endonuclease V encapsulated in liposomes to UV-irradiated mouse skin decreased the number of cyclobutane pyrimidine dimers in the epidermis and prevented suppression of both delayed and contact hypersensitivity responses. Moreover, the formation of suppressor lymphoid cells was inhibited. Control, heat-inactivated endonuclease encapsulated in liposomes had no effect. These studies demonstrate that DNA is the major target of UV radiation in the generation of systemic immunosuppression and suggest that the primary molecular event mediating these types of immunosuppression by UV radiation is the formation of pyrimidine dimers. Furthermore, they illustrate that the delivery of lesion-specific DNA repair enzymes to living skin after UV irradiation is an effective tool for restoring immune function and suggest that this approach may be broadly applicable to preventing other alterations caused by DNA damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here