z-logo
open-access-imgOpen Access
Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level.
Author(s) -
C Udomsakdi,
Connie J. Eaves,
Birgitta Swolin,
Dianne Reid,
Michael J. Barnett,
AC Eaves
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.13.6192
Subject(s) - clonogenic assay , haematopoiesis , progenitor cell , myeloid , leukemia , myeloid leukemia , cell culture , biology , stem cell , cancer research , bone marrow , immunology , microbiology and biotechnology , genetics
In this report we describe a quantitative in vitro assay for the most primitive type of leukemic precursors yet defined in patients with chronic myeloid leukemia (CML). This assay is based on the recently described "long-term culture-initiating cell" (LTC-IC) assay for primitive normal human hematopoietic cells. Such cells, when cocultured with competent fibroblast feeder layers, give rise after a minimum of 5 weeks to multiple single and multilineage clonogenic progenitors detectable in secondary semisolid assay cultures. Similar cultures initiated by seeding a highly enriched source of leukemic cells from patients onto normal feeders showed the clonogenic cell output after 5 weeks to be linearly related to the input innoculum over a wide range down to limiting numbers of input cells, thus allowing absolute frequencies of leukemic LTC-ICs to be determined using standard limiting dilution analysis techniques. Leukemic LTC-IC concentrations in CML marrow were found to be decreased, on average to less than 10% of the normal LTC-IC concentration in normal marrow, but were greatly increased (up to greater than 10(5) times) in CML blood. Assessment of the number of clonogenic cells produced per leukemic LTC-IC by comparison to normal blood or marrow LTC-IC values showed this function to be unchanged in leukemic LTC-ICs [i.e., 3.1 +/- 0.4 clonogenic cells per CML LTC-IC (mean +/- SEM, n = 6) versus 3.7 +/- 1.2 (n = 3) and 4.3 +/- 0.4 (n = 5), respectively, for normal blood and marrow LTC-ICs]. In contrast, leukemic LTC-IC maintenance in LTC proved to be highly defective by comparison to normal LTC-IC of either blood or marrow origin. Thus, when cells from primary LTC were subcultured into secondary LTC-IC assays, leukemic LTC-IC rapidly declined (greater than 30-fold) within the first 10 days of culture, whereas normal LTC-IC numbers remained unchanged during this period. These findings illustrate how self-maintenance and differentiation events in primitive human hematopoietic cells can be differentially modulated by an oncogenic process and provide a framework for further studies of their manipulation, analysis, and therapeutic exploitation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here