z-logo
open-access-imgOpen Access
Surface-bound optical probes monitor protein translocation and surface potential changes during the bacteriorhodopsin photocycle.
Author(s) -
Joachim Heberle,
Norbert A. Dencher
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.13.5996
Subject(s) - bacteriorhodopsin , chemistry , absorbance , microsecond , membrane , aqueous solution , rhodopsin , kinetics , analytical chemistry (journal) , photochemistry , chromatography , biochemistry , retinal , physics , quantum mechanics , astronomy
Light-induced H+ release and reuptake as well as surface potential changes inherent in the bacterio-rhodopsin reaction cycle were measured between 10 degrees C and 50 degrees C. Signals of optical pH indicators covalently bound to Lys-129 at the extracellular surface of bacteriorhodopsin were compared with absorbance changes of probes residing in the aqueous bulk phase. Only surface-bound indicators monitor the kinetics of H+ ejection from bacteriorhodopsin and allow the correlation of the photocycle with the pumping cycle. During the L550----M412 transition the H+ appears at the extracellular surface of bacteriorhodopsin. Surface potential changes detected by bound fluorescein or by the potentiometric probe 4-[2-(di-n-butylamino)-6-naphthyl]vinyl-1-(3-sulfopropyl)pyridinium betaine (di-4-ANEPPS) occur in milliseconds concomitantly with the formation and decay of the N intermediate. pH indicators residing in the aqueous bulk phase reflect the transfer of H+ from the membrane surface into the bulk but do not probe the early events of H+ pumping. The observed retardation of H+ at the membrane surface for several hundred microseconds is of relevance for energy conversion of biological membranes powered by electrochemical H+ gradients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here