z-logo
open-access-imgOpen Access
Discrimination of DNA response elements for thyroid hormone and estrogen is dependent on dimerization of receptor DNA binding domains.
Author(s) -
Margaret A. Hirst,
Lindsay Hinck,
Mark Danielsen,
Gordon M. Ringold
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.12.5527
Subject(s) - hormone response element , dimer , estrogen receptor , zinc finger , receptor , dna , glucocorticoid receptor , chemistry , thyroid hormone receptor , dna binding domain , amino acid , biochemistry , biology , microbiology and biotechnology , gene , transcription factor , genetics , organic chemistry , cancer , breast cancer
We and others have previously shown that a two-amino acid substitution in the base of the first zinc finger of the glucocorticoid receptor DNA binding domain (DBD) is sufficient to alter the receptor's target DNA from a glucocorticoid response element (GRE) to an estrogen response element (ERE). Activation of a thyroid hormone response element (TRE) has been shown to require an additional five-amino acid change in the second zinc finger of the thyroid hormone receptor (TR). Using closely related TRE and ERE sequences, we report that a receptor containing the TR DBD activates the ERE poorly, and receptors containing essential amino acids of the estrogen receptor (ER) DBD activate the TRE poorly. The ER DBD (expressed in Escherichia coli) selectively bound to a 32P-labeled ERE (32P-ERE) as a dimer and a 32P-TRE as a monomer, whereas the TR DBD bound 32P-TRE as a dimer and 32P-ERE as a monomer. When hybrid receptor DBDs were examined, we found that the five amino acids in the second zinc finger of the TR necessary for TRE activation were also essential for dimer formation on a TRE. Dimer formation of ER on an ERE was localized to the second half of the second zinc finger. These results suggest that the ability of ER and TR to functionally discriminate between an ERE and a TRE is a result of dimerization of their DBDs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here