
Expression of monocyte chemoattractant protein 1 mRNA in human idiopathic pulmonary fibrosis.
Author(s) -
Harry N. Antoniades,
Janine Neville-Golden,
T Galanopoulos,
Richard L. Kradin,
Anthony J. Valente,
Dana T. Graves
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.12.5371
Subject(s) - monocyte , idiopathic pulmonary fibrosis , pathology , biology , in situ hybridization , macrophage , pulmonary fibrosis , immunocytochemistry , immunostaining , chemokine , lung , inflammation , population , fibrosis , immunology , medicine , messenger rna , immunohistochemistry , in vitro , biochemistry , environmental health , gene
Macrophages are thought to play an important role in the pathologic changes associated with idiopathic pulmonary fibrosis (IPF). The mechanisms for increased monocyte/macrophage recruitment in IPF are unknown. Monocyte chemoattractant protein 1 (MCP-1) is the predominant monocyte chemoattractant secreted by a variety of different cell types in culture. We examined the expression of MCP-1 mRNA and its protein product in vivo in IPF and non-IPF lung specimens by in situ hybridization and immunocytochemistry. The cell types expressing MCP-1 in vivo were identified by immunostaining with specific antibodies. We demonstrated the expression of MCP-1 mRNA in pulmonary epithelial cells, in monocytes/macrophages, and in vascular endothelial and smooth muscle cells. Lung epithelial cells in patients with IPF strongly expressed MCP-1 mRNA and its protein product. In contrast, epithelial cells in non-IPF specimens did not express MCP-1 mRNA. Macrophages and vascular endothelial and smooth muscle cells were shown to express MCP-1 in both IPF and non-IPF lung specimens. These findings provide a basis for the understanding of the in vivo physiologic processes that mediate monocyte/macrophage recruitment and infiltration in the lung interstitium and the pathologic state contributing to an increased alveolar monocyte/macrophage population and inflammation in IPF.