
Chromosomal context dependence of a eukaryotic recombinational hot spot.
Author(s) -
Alfred S. Ponticelli,
Gerald R. Smith
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.1.227
Subject(s) - schizosaccharomyces pombe , biology , genetics , homologous recombination , gene , genetic recombination , dna , schizosaccharomyces , plasmid , context (archaeology) , microbiology and biotechnology , recombination , saccharomyces cerevisiae , paleontology
The single base-pair mutation M26 in the ade6 gene of the fission yeast Schizosaccharomyces pombe creates a hot spot for meiotic homologous recombination. When DNA fragments containing M26 and up to 3.0 kilobases of surrounding DNA were moved to the ura4 gene or to a multicopy plasmid, M26 had no detectable hot spot activity. Our results indicate that nucleotide sequences at least 1 kilobase away from M26 are required for M26 hot spot activity and suggest that, as for transcriptional promoters, a second site or proper chromatin structure is required for activation of this eukaryotic recombinational hot spot. We discuss the implications of these results for studies of other meiotic recombinational hot spots and for gene targeting.