
Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes.
Author(s) -
Robert H. Carter,
Do Joon Park,
Sue Goo Rhee,
Douglas T. Fearon
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.7.2745
Subject(s) - phosphorylation , tyrosine phosphorylation , phospholipase c , immunoprecipitation , tyrosine kinase , microbiology and biotechnology , signal transduction , biology , tyrosine , biochemistry , protein kinase c , gq alpha subunit , proximity ligation assay , intracellular , receptor , g protein , gene
Ligation of membrane IgM on B lymphocytes causes activation of a protein-tyrosine kinase(s) (PTK) and of phospholipase C (PLC). To determine whether these are elements of a common signal-transduction pathway, the effect of three PTK inhibitors on the rise in intracellular free Ca2+ concentration [( Ca2+]i) in human B-lymphoblastoid cell lines was assessed. Tyrphostin completely suppressed the increase in [Ca2+]i and the generation of inositol phosphates induced by ligation of membrane immunoglobulin (mIg) M. Herbimycin and genistein reduced by 30% and 50%, respectively, the rise in [Ca2+]i caused by optimal ligation of mIgM, and they abolished it in cells activated by suboptimal ligation of mIgM. Tyrphostin had no effect on the capacity of aluminum fluoride to increase [Ca2+]i. To determine whether a function of PTK is the phosphorylation of PLC, immunoprecipitates obtained with anti-phosphotyrosine from detergent lysates of B-lymphoblastoid cells were assayed for PLC activity. Ligation of mIgM increased immunoprecipitable PLC activity 2-fold by 90 sec and 4-fold by 30 min. Specific immunoprecipitation and Western blot analysis identified tyrosine phosphorylation of the gamma 1 isoform of PLC after 60 sec of stimulation. Activation of PLC in B cells by mIgM requires PTK function and is associated with tyrosine phosphorylation of PLC-gamma 1, suggesting a mechanism of PLC activation similar to that described for certain receptor PTKs.