
Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP.
Author(s) -
Klaus H. Kaestner,
Jaime Flores-Riveros,
John C. McLenithan,
Michel Janicot,
M. Daniel Lane
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.5.1933
Subject(s) - glut4 , glut1 , glucose transporter , medicine , glucose uptake , endocrinology , adipose tissue , forskolin , biology , messenger rna , insulin , glucose transporter type 1 , 3t3 l1 , gene expression , chemistry , adipocyte , biochemistry , gene , stimulation
Glucose uptake by adipose tissue is mediated by two glucose transporters: GLUT4, which is most abundant, and GLUT1. While GLUT1 is expressed in many tissues, GLUT4 is unique to tissues that exhibit insulin-stimulated glucose uptake (heart and skeletal muscle and adipose tissue). In the diabetic state and during starvation, insulin-stimulated glucose uptake and GLUT4 expression are decreased in tissue adipocytes. Using 3T3-L1 adipocytes in culture, we investigated the possibility that these effects are mediated by elevated cellular cAMP. When 3T3-L1 adipocytes were treated for 16 hr with forskolin or 8-Br-cAMP, GLUT4 mRNA and protein were decreased by approximately 70%, while expression of GLUT1 mRNA and protein was increased 3-fold. These changes were accompanied by an increased basal rate of 2-deoxyglucose uptake and a loss of acute responsiveness of hexose uptake to insulin. The magnitude of GLUT4 mRNA depletion/GLUT1 mRNA accumulation was dependent upon the concentration of 8-Br-cAMP. The decrease of GLUT4 mRNA caused by 8-Br-cAMP was the result of a decreased transcription rate, while the half-life of the message was unaffected. The increase in GLUT1 mRNA caused by 8-Br-cAMP was the result of both transient transcriptional activation and mRNA stabilization. We suggest that down-regulation of GLUT4 mRNA in adipose tissue in the diabetic state and during starvation is the result of repression of transcription of the GLUT4 gene caused by cAMP.