z-logo
open-access-imgOpen Access
A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1.
Author(s) -
Joseph Sebastian,
Gwendolyn B. Sancar
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.24.11251
Subject(s) - biology , upstream activating sequence , microbiology and biotechnology , dna damage , transcription (linguistics) , dna , dna repair , repressor , transcription factor , dna binding domain , electrophoretic mobility shift assay , tata box , gene , gene expression , promoter , biochemistry , linguistics , philosophy
The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. We report here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 upstream repression sequence, that together regulate induction of PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. A prominent feature of the foot-printed region is a 22-base-pair palindrome. Deletion of the PHR1 upstream repression sequence increased the basal level expression of PHR1 in vivo and decreased induction after exposure of cells to UV radiation or methyl methanesulfonate, whereas insertion of the PRP binding site between the CYC1 upstream activation sequence and "TATA" sequence reduced basal level expression and conferred damage responsiveness upon a reporter gene. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here