
Human papillomavirus 16 E7 protein is associated with the nuclear matrix.
Author(s) -
Isobel Greenfield,
Jeffrey A. Nickerson,
Sheldon Penman,
Margaret Stanley
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.24.11217
Subject(s) - nuclear matrix , microbiology and biotechnology , nuclear protein , immunostaining , cell nucleus , chemistry , cell fractionation , cell culture , nuclear localization sequence , epitope , chromatin , monoclonal antibody , transfection , biology , nucleus , antigen , antibody , dna , biochemistry , immunohistochemistry , gene , immunology , genetics , membrane , transcription factor
The cellular localization of the human papillomavirus (HPV)-16 E7 gene product in the cell lines CaSki and SiHa has been determined by both biochemical and immunocytochemical methods. These measurements show E7 to be localized in the cell nucleus, specifically with the nonchromatin nuclear structure or nuclear matrix. This localization of E7 required an unambiguous fractionation of the nuclear constituents. This was achieved by using a gentle sequential fractionation procedure to prepare the scaffold consisting of the nuclear matrix and intermediate filaments (NM-IF). Chromatin was cleaved with nuclease and the resulting nucleosomes eluted with 0.25 M ammonium sulfate. Immunostaining of cells after this extraction procedure with monoclonal antibodies (mAbs) to E7 revealed a fine grained, punctate nuclear fluorescence in CaSki and SiHa, which was absent in normal cervical keratinocytes and the HPV-negative cell line C33.1. Western blots of cell fractions with these mAbs showed that E7 was localized in the NM-IF fraction in SiHa and CaSki but was not detected in HPV-negative cells. A second protein of slightly higher mobility is identified by these antisera in HPV-16-containing cells. The data suggest that the previous inability to directly visualize E7 by immunocytology is due to the masking of epitopes by cellular components and not to low levels of protein.