Open Access
Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis.
Author(s) -
Peter Jarolim,
Jiří Palek,
Dominick Amato,
Khalid Hassan,
Peter Sapak,
G.T. Nurse,
Hillard Rubin,
Sen Zhai,
Kenneth E. Sahr,
ShihChun Liu
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.24.11022
Subject(s) - band 3 , biology , gene , genetics , transmembrane protein , southeast asia , amino acid , erythrocyte membrane , history , ancient history , receptor , membrane
Southeast Asian ovalocytosis (SAO) is a hereditary condition that is widespread in parts of Southeast Asia. The ovalocytic erythrocytes are rigid and resistant to invasion by various malarial parasites. We have previously found that the underlying defect in SAO involves band 3 protein, the major transmembrane protein, which has abnormal structure and function. We now report two linked mutations in the erythrocyte band 3 gene in SAO: (i) a deletion of codons 400-408 and (ii) a substitution, A----G, in the first base of codon 56 leading to substitution of Lys-56 by Glu-56. The first defect leads to a deletion of nine amino acids in the boundary of cytoplasmic and membrane domains of band 3. This defect has been detected in all 30 ovalocytic subjects from Malaysia, the Philippines, and two unrelated coastal regions of Papua New Guinea, whereas it was absent in all 30 controls from Southeast Asia and 20 subjects of different ethnic origin from the United States. The Lys-56----Glu substitution has likewise been found in all SAO subjects. However, it has also been detected in 5 of the 50 control subjects, suggesting that it represents a linked polymorphism. We conclude that the deletion of codons 400-408 in the band 3 gene constitutes the underlying molecular defect in SAO.