z-logo
open-access-imgOpen Access
Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C.
Author(s) -
Basil S. Shorrosh,
Richard A. Dixon
Publication year - 1991
Publication title -
proceedings of the national academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.23.10941
Subject(s) - protein disulfide isomerase , biology , complementary dna , peptide sequence , biochemistry , microbiology and biotechnology , nucleic acid sequence , amino acid , endoplasmic reticulum , cdna library , gene
cDNA clones containing sequence similarity to the multifunctional vertebrate protein disulfide-isomerase (PDI, EC 5.3.4.1) were isolated from an alfalfa (Medicago sativa L.) cDNA library by screening with a cDNA sequence encoding human PDI. The polypeptide encoded by a clone designated B2 consisted of 512 amino acids and was characterized by a 24-amino acid hydrophobic leader sequence, two regions with absolute identity to the vertebrate PDI active site (Ala-Pro-Trp-Cys-Gly-His-Cys-Lys), and a C-terminal endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu). The overall identity of the B2 sequence to that of human PDI was 35% at the amino acid level (79% when conservative substitutions were included) and 39% at the nucleotide level; this included homology between B2 and the region of human PDI believed to be involved in binding estrogens. The deduced amino acid sequence of B2 was also 35% identical to that of a rat form I phosphatidylinositol-specific phospholipase C. Lysates from Escherichia coli cells harboring an expression plasmid bearing the B2 sequence contained significantly elevated levels of PDI activity. Southern analysis indicated the presence of a small PDI-related gene family in alfalfa, of which B2 appeared to correspond to a single gene. An approximately 2-kilobase B2 transcript was expressed in all alfalfa organs tested. In alfalfa cell suspension cultures, B2 transcripts were strongly induced by tunicamycin but not by exposure to fungal elicitor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom