z-logo
open-access-imgOpen Access
Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications.
Author(s) -
ChengI Wang,
JohnStephen Taylor
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.20.9072
Subject(s) - dimer , pyrimidine dimer , dna , thymine , crystallography , chemistry , biophysics , stereochemistry , biology , biochemistry , dna damage , organic chemistry
dAn.dTn sequences, otherwise known as A tracts, are hotspots for cis-syn thymine dimer formation and deletion mutations induced by UV light. Such A tracts are also known to bend DNA, suggesting that some biological effects of UV light might be related to the distinctive structure and properties of cis-syn dimer-containing A tracts. To investigate the effect of thymine dimer formation on A-tract bending multimers of all possible dimer monoadducts of a dA6.dT6-containing decamer known to bend DNA were prepared along with multimers of a dimer-containing 21-mer of heterogeneous sequence. The characteristic anomalous electrophoretic behavior of the phased A-tract multimers was essentially abolished by dimer formation at the center of the A tract and was only slightly reduced by dimer formation at the ends. These effects are attributed to disruption of the A-tract structure at the site of the dimer, resulting in intact A tracts of reduced length and, hence, reduced bending. This model was suggested by the ability to formulate the estimated bend angles of the dimer-containing A tracts as approximately equal to the sum of the bend angles induced by the dimer and the remaining intact portion of the A tract. Contrary to a previous experimental study that concluded that the thymine dimer bends DNA by approximately 30 degrees, the dimer was determined to bend DNA by only approximately 7 degrees. Reduction of the bending of a DNA sequence by dimer formation may have a number of unpredicted and important biological consequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here