
Transcriptional antagonist cAMP-responsive element modulator (CREM) down-regulates c-fos cAMP-induced expression.
Author(s) -
Nicholas S. Foulkes,
B M Laoide,
Florence Schlotter,
Paolo Sassone–Corsi
Publication year - 1991
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.88.12.5448
Subject(s) - activator (genetics) , response element , serum response element , transcription (linguistics) , transcription factor , signal transduction , microbiology and biotechnology , biology , transcriptional regulation , promoter , chemistry , receptor , gene expression , gene , serum response factor , genetics , linguistics , philosophy
Protooncogene c-fos is induced by activation of adenylate cyclase through the major cAMP-responsive element (CRE) centered at position -60 of the promoter. cAMP induction is followed by a rapid decrease in transcriptional rate, reminiscent of down-regulation after serum stimulation. Fos protein is known to negatively autoregulate serum-induced transcription of c-fos promoter, but whether Fos is responsible for down-regulation of cAMP-induced transcription is unclear. Here we show that Fos is unable to down-regulate CRE-mediated activation. We present evidence that the transcriptional antagonist CRE modulator (CREM) can bind to c-fos CRE and heterodimerize with activator CRE-binding protein, thereby blocking cAMP induction. Furthermore, expression of antisense CREM enhances c-fos basal and cAMP-induced transcription. CREM does not antagonize serum-induced transcription; therefore, we conclude that down-regulation of c-fos is exerted by different effectors, depending upon which signal transduction pathway is activated. We speculate that, by its c-fos down-regulatory function, CREM may act as an antioncogene.