z-logo
open-access-imgOpen Access
Activity of synthetic tat peptides in human immunodeficiency virus type 1 long terminal repeat-promoted transcription in a cell-free system.
Author(s) -
J Jeyapaul,
Moole R. Reddy,
Sundas Khan
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.18.7030
Subject(s) - transcription (linguistics) , peptide , microbiology and biotechnology , activator (genetics) , biology , in vitro , peptide sequence , long terminal repeat , cell culture , chemistry , biochemistry , gene expression , gene , genetics , philosophy , linguistics
The tat protein encoded by the human immunodeficiency virus type 1 is a potent trans-activator of gene expression from the viral long terminal repeat. The domains that are essential for trans-activation, a Pro-Xaa3-Pro triad, a cysteine-rich metal-binding sequence motif, and a cluster of basic residues, are present within the N-terminal 57 residues of tat. To determine the structural requirements for tat function and the role of metal binding at the transcription level alone, tat-(1-86) (full-length tat peptide), tat-(1-57), and tat-(1-47) were chemically synthesized. These peptides as well as the Cd2+ and Zn2+ complexes of tat-(1-86) and tat-(1-57) were evaluated for stimulation of transcription from the human immunodeficiency virus type 1 long terminal repeat by using cell-free in vitro methods. All three peptides produced a 7- to 9-fold increase over the basal level of transcription at a peptide concentration of 0.4 microM. Interestingly, at 4 microM, both tat-(1-57) and tat-(1-86) inhibited even the basal level of transcription. In contrast, tat-(1-47), which lacks the basic domain (residues 49-57), exhibited full stimulatory activity at 4 microM. Our data suggest, therefore, that the basic region may be responsible for the observed inhibitory activity of tat-(1-86) and tat-(1-57). Furthermore, binding to Zn2+ and not to Cd2+ ions only slightly augments (approximately 2-fold) the activity of the tat peptides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here