z-logo
open-access-imgOpen Access
Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group.
Author(s) -
Cornelis J.P. Grimmelikhuijzen,
Kenneth L. Rinehart,
Elard Jacob,
D. Graff,
Rainer K. Reinscheid,
HansPeter Nothacker,
Andrew L. Staley
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.14.5410
Subject(s) - sea anemone , peptide , neuropeptide , radioimmunoassay , peptide sequence , amino acid , chemistry , biology , antiserum , biochemistry , receptor , antibody , botany , gene , immunology
Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Asn-NH2, we have purified a peptide from acetic acid extracts of the sea anemone Anthopleura elegantissima. By classical amino acid analyses, mass spectrometry, and 1H NMR spectroscopy, the structure of this peptide was determined as 3-phenyllactyl-Leu-Arg-Asn-NH2. By using reversed-phase HPLC and a chiral mobile phase, it was shown that the 3-phenyllactyl group had the L configuration. Immunocytochemical staining with antiserum against Arg-Asn-NH2 showed that L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide) was localized in neurons of sea anemones. The L-3-phenyllactyl group has not been found earlier in neuropeptides of vertebrates or higher invertebrates. We propose that this residue renders Antho-RNamide resistant to nonspecific aminopeptidases, thereby increasing the stability of the peptide after neuronal release.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here