z-logo
open-access-imgOpen Access
Introduction of specific point mutations into RNA polymerase II by gene targeting in mouse embryonic stem cells: evidence for a DNA mismatch repair mechanism.
Author(s) -
Carol Miernicki Steeg,
James Ellis,
Alan Bernstein
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.12.4680
Subject(s) - biology , point mutation , microbiology and biotechnology , genetics , gene , gene targeting , polymerase , mutation
We have introduced two specific point mutations, located 20 base pairs apart, into the endogenous murine gene that encodes the largest subunit of RNA polymerase II (RPII215). The first mutation conferred resistance to the mushroom toxin alpha-amanitin (amar), and the second mutation generated a restriction fragment length polymorphism without altering the protein sequence. Targeted amar clones were generated at a frequency of 1 in 30 totipotent embryonic stem cells that expressed stably integrated DNA vectors after electroporation. Thirty to 40% of these clones had acquired both mutations, whereas, surprisingly, the remaining clones had acquired the specific amar point mutation but lacked the restriction fragment length polymorphism. We suggest that the latter clones were generated by independent DNA mismatch repair rather than by double crossover or gene conversion. These results demonstrate that it is possible to introduce specific point mutations into an endogenous gene in embryonic stem cells. Thus it should be possible to introduce single base substitutions into other cellular genes, including nonselectable genes, by optimizing the efficiency of gene transfer and/or the sensitivity of screening for targeted clones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here