z-logo
open-access-imgOpen Access
Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling.
Author(s) -
Kendall J. Blumer,
Jeremy Thorner
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.11.4363
Subject(s) - g alpha subunit , interleukin 10 receptor, alpha subunit , scn3a , g protein , interleukin 5 receptor alpha subunit , protein subunit , gtp' , gamma aminobutyric acid receptor subunit alpha 1 , gamma subunit , biology , biochemistry , gi alpha subunit , g beta gamma complex , microbiology and biotechnology , gtp binding protein regulators , affinity labeling , receptor , gene , enzyme
Conditions were devised to demonstrate GTP-regulated coupling between the yeast STE2-encoded receptor and its cognate guanine nucleotide-binding protein (G protein). Treatment of partially purified membranes with guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) converted the receptor from a high-affinity state (Kd = 17 nM) to a much lower affinity state (Kd approximately 150 nM), as judged by three independent criteria: rate of ligand (alpha-factor) dissociation, equilibrium binding, and antagonist competition. Expression of STE2 from the GAL1 promoter in MATa/MAT alpha diploids, which do not express GPA1 (encoding G protein alpha subunit, G alpha), STE4 (encoding G protein beta subunit, G beta), and STE18 (encoding G protein gamma subunit, G gamma) but do express another G protein alpha subunit (product of GPA2), yielded a single class of low-affinity receptors that were GTP[gamma-S]-insensitive, indicating that STE2 gene product cannot couple productively with other G proteins, even in the absence of competition by its cognate G protein. By using gpa1, STE4, and ste18 mutations, it was found that all three G protein subunits were required for functional coupling, as judged by the absence of high-affinity receptors when any of the three gene products was altered. This finding demonstrates that G beta and G gamma subunits are essential for formation of a productive complex between a G alpha subunit and its corresponding receptor. Wild-type STE4 and STE18 gene products were not essential for membrane localization of the GPA1 gene product, as indicated by cell fractionation and immunological analyses, suggesting that G beta and G gamma subunits interact with the receptor or make the G alpha subunit competent to associate correctly with the receptor, or both.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here