
gamma-Preprotachykinin-(72-92)-peptide amide: an endogenous preprotachykinin I gene-derived peptide that preferentially binds to neurokinin-2 receptors.
Author(s) -
ThanVinh Dam,
Yasuo Takeda,
James E. Krause,
Emanuel Escher,
Rémi Quirion
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.1.246
Subject(s) - neurokinin a , neurokinin b , eledoisin , substance p , peptide , receptor , tachykinin receptor , chemistry , tachykinin receptor 1 , agonist , ligand (biochemistry) , biochemistry , biology , neuropeptide , microbiology and biotechnology
The presence of N-terminally extended forms of neurokinin A has recently been reported in the mammalian brain. Among them, gamma-preprotachykinin-(72-92)-peptide amide [gamma-PPT-(72-92)-NH2], a peptide derived by posttranslational processing of gamma-preprotachykinin, is most prominent. We report here that this peptide most likely acts on neurokinin-2 receptor sites since neurokinin A (a putative neurokinin-2 agonist) and gamma-PPT-(72-92)-NH2 are potent competitors of 125I-labeled gamma-PPT-(72-92)-NH2 binding whereas selective neurokinin-1 and -3 agonists are not. Moreover, the distribution of 125I-labeled gamma-PPT-(72-92)-NH2 and 125I-labeled neurokinin A binding sites are very similar in rat brain. On the other hand, 125I-labeled Bolton-Hunter-substance P (a neurokinin-1 ligand) and 125I-labeled Bolton-Hunter-eledoisin (a neurokinin-3 ligand) binding sites are differentially located in this tissue. Thus, it appears that gamma-PPT-(72-92)-NH2 binds to neurokinin-2 receptors and should be considered as a putative endogenous ligand for this receptor class.