
Cloning of human calcineurin A: evidence for two isozymes and identification of a polyproline structural domain.
Author(s) -
Danilo Guerini,
Claude B. Klee
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.23.9183
Subject(s) - calcineurin , calmodulin , phosphatase , biology , biochemistry , isozyme , peptide sequence , protein subunit , gtpase , microbiology and biotechnology , enzyme , gene , medicine , surgery , transplantation
Two types (I and II) of cDNAs encoding the large (A) subunit of calcineurin, a calmodulin-regulated protein phosphatase, were isolated from human basal ganglia and brainstem mRNA. The complete sequences of the two calcineurin clones are identical except for a 54-base-pair insert in the type I clone and different 3' ends including part of the coding sequence for the C termini of the two proteins. These findings suggest that calcineurin A consists of at least two isozymes that may result from alternative splicing events. The two forms of the enzyme differ in the C terminus, which contains an inhibitory domain rapidly severed by limited proteolysis. With the exception of an 18-amino acid insert, the central parts of the molecules, which harbor the catalytic domains, are identical and show extended similarities with the entire catalytic subunits of protein phosphatases 1 and 2A, defining a distinct family of protein phosphatases. The 40-residue N-terminal fragment, specific for calcineurin, contains a sequence of 11 successive prolines that is also found in bovine brain calcineurin by peptide sequencing. A role in the calmodulin activation of calcineurin is proposed for this novel structural element.