
DNA fingerprinting by sampled sequencing.
Author(s) -
Sydney Brenner,
Kenneth J. Livak
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.22.8902
Subject(s) - restriction enzyme , dna , sequencing by hybridization , restriction fragment , dna sequencer , biology , dna sequencing , dna profiling , sequence (biology) , fingerprint (computing) , sequencing by ligation , computational biology , gel electrophoresis , restriction site , restriction digest , genetics , base sequence , computer science , genomic library , artificial intelligence
We describe a method for characterizing DNA segments that combines limited sequencing with size separation of restriction fragments. As part of a multistep procedure, 5' overhangs of unknown sequence are generated by cleavage with a class IIS restriction enzyme. After labeling of these ends by using dideoxynucleotides tagged with distinctive fluorescent dyes, the restriction fragments are analyzed by polyacrylamide gel electrophoresis and detection of fluorescent emissions using a commercially available DNA sequencer. The nucleotide-specific fluorescent signatures permit determination of the terminal sequence for each labeled end. The set of labeled fragments, characterized by both size and terminal sequence, constitutes a fingerprint that can be used to compare DNA segments for overlap or relatedness. The inclusion of terminal sequence data dramatically increases the information content of the fingerprint, making comparisons more reliable and efficient than those based upon size alone.