
Tumor necrosis factor induces phosphorylation of a 28-kDa mRNA cap-binding protein in human cervical carcinoma cells.
Author(s) -
Michael W. Marino,
Lawrence M. Pfeffer,
Peter T. Guidon,
David B. Donner
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.21.8417
Subject(s) - phosphorylation , phosphoprotein , microbiology and biotechnology , tumor necrosis factor alpha , biology , binding protein , endocrinology , biochemistry , gene
Tumor necrosis factor alpha (TNF-alpha) stimulated the phosphorylation of a 28-kDa protein (p28) in the ME-180 line of human cervical carcinoma cells. The effect of TNF-alpha on the phosphorylation state of p28 was rapid (4-fold increase within 15 min) and persistent, remaining above the basal level for at least 2 hr. The specific binding of 125I-labeled TNF-alpha to cell-surface binding sites, the stimulation of p28 phosphorylation by TNF-alpha, and the inhibition of cell proliferation by TNF-alpha occurred with nearly identical dose-response relationships. Two-dimensional SDS/PAGE resolved p28 into two isoforms having pI values of 6.2 and 6.1. A phosphorylated cap-binding protein was substantially enriched from lysates of control or TNF-alpha-treated ME-180 cells by affinity chromatography with 7-methylguanosine 5'-triphosphate-Sepharose. The phosphoprotein recovered from this procedure was the substrate for TNF-alpha-promoted phosphorylation, p28. Thus, TNF-alpha stimulates the phosphorylation of this mRNA cap-binding protein, which may be involved in the transduction of TNF-alpha-receptor binding into cellular responses.