z-logo
open-access-imgOpen Access
Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants.
Author(s) -
Eric Lam,
Philip N. Benfey,
Philip M. Gilmartin,
Rongxiang Fang,
NamHai Chua
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.20.7890
Subject(s) - cauliflower mosaic virus , biology , microbiology and biotechnology , promoter , binding site , transgene , regulatory sequence , gene expression , gene , genetics , genetically modified crops
The 35S promoter of cauliflower mosaic virus (CaMV) is able to confer high-level gene expression in most organs of transgenic plants. A cellular factor from pea and tobacco leaf tissue, which recognizes nucleotides in a tandemly repeated TGACG motif at the -75 region of this promoter, has been detected by DNase I footprinting and gel retardation assays. This factor is named activation sequence factor 1 (ASF-1). A cellular factor binding to the two TGACG motifs can also be detected in tobacco root extracts. Mutations at these motifs inhibit binding of ASF-1 to the 35S promoter in vitro. When examined in transgenic tobacco, these mutations cause a 50% drop in leaf expression of the 35S promoter. In addition, these same mutations attenuate stem and root expression of the 35S promoter about 5- to 10-fold when compared to the level of expression in leaf. In contrast, mutations at two adjacent CCAAT-box-like sequences have no dramatic effect on promoter activity in vivo. A 21-base-pair element containing the two TGACG motifs is sufficient for binding of ASF-1 in vitro when inserted in a green-tissue-specific promoter. In vivo, the insertion of an ASF-1 binding site caused high levels of expression in root. Thus, a single factor binding site that is defined by site-specific mutations is shown to be sufficient to alter the expression pattern of promoters in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here