z-logo
open-access-imgOpen Access
Human beta-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site.
Author(s) -
Peter T. Curtin,
Depei Liu,
Wen Li,
J. Chang,
Yuet Wai Kan
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.18.7082
Subject(s) - microbiology and biotechnology , biology , globin , gene , gene expression , beta (programming language) , transgene , messenger rna , gene cluster , genetics , computer science , programming language
Several lines of evidence suggest that erythroid-specific DNase I hypersensitive sites (HS) located far upstream of the human beta-globin gene are important in regulating beta-globin gene expression. We used the polymerase chain reaction technique to amplify and clone an 882-base-pair DNA fragment spanning one of these HS, designated HSII, which is located 54 kilobases upstream of the beta-globin gene. The cloned HSII fragment was linked to a human beta-globin gene in either the genomic (HSII-beta) or antigenomic (HSII-beta) orientation. These two constructs and a beta-globin gene alone (beta) were injected into fertilized mouse eggs, and expression was analyzed in liver and brain from day-16 transgenic fetuses. Five of 7 beta-transgenic fetuses expressed human beta-globin mRNA, but the level of expression per gene copy was low, ranging from 0.93 to 22.4% of mouse alpha-globin mRNA (average 9.9%). In contrast, 11 of 12 HSII-beta transgenic fetuses expressed beta-globin mRNA at levels per gene copy ranging from 31.3 to 336.6% of mouse alpha-globin mRNA (average 139.5%). Only three fetuses containing intact copies of the HSII-beta construct were produced. Two of three expressed human beta-globin mRNA at levels per gene copy of 179.2 and 387.1%. Expression of human beta-globin mRNA was tissue-specific in all three types of transgenic fetuses. These studies demonstrate that a small DNA fragment containing a single erythroid-specific HS can stimulate high-level human beta-globin gene expression in transgenic mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here