
Cis-acting elements of the sea urchin histone H2A modulator bind transcriptional factors.
Author(s) -
Franco Palla,
Caterina Casano,
Ida Albanese,
Letizia Anello,
Fabrizio Gianguzza,
Maria Grazia Di Bernardo,
Celestino Bonura,
Giovanni Spinelli
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.16.6033
Subject(s) - biology , xenopus , sea urchin , microbiology and biotechnology , transcription (linguistics) , histone , gene , genetics , linguistics , philosophy
Functional tests, performed by microinjection into Xenopus laevis oocytes, show that a DNA fragment containing the modulator of the early histone H2A gene of Paracentrotus lividus enhances transcription of a reporter gene when located, in the physiological orientation, upstream of the tk basal promoter. Gel retardation and DNase I footprinting assays further reveal that the H2A modulator contains at least two binding sites [upstream sequence elements 1 and 2 (USE 1 and USE 2)] for nuclear factors extracted from sea urchin embryos, which actively transcribe the early histone gene set. Interestingly, USE 1 is highly homologous to a cis-acting element previously identified in the H2A modulator of Psammechinus miliaris [Grosschedl, R., Mächler, M., Rohrer, U. & Birnstiel, M. L. (1983) Nucleic Acids Res. 11, 8123-8136]. Finally, a cloned oligonucleotide containing the USE 1 sequence competes efficiently in Xenopus oocytes with the H2A modulator to prevent enhancement of transcription of the reporter gene. From these results, we conclude that USE 1 and perhaps USE 2 in the H2A modulator are upstream transcriptional elements that are recognized by trans-acting factors common to Xenopus and sea urchin.