z-logo
open-access-imgOpen Access
Role of aspartate-96 in proton translocation by bacteriorhodopsin.
Author(s) -
Klaus Gerwert,
Benno Hess,
Jörg Soppa,
Dieter Oesterhelt
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.13.4943
Subject(s) - bacteriorhodopsin , deprotonation , protonation , chemistry , mutant , residue (chemistry) , crystallography , mutant protein , carboxylate , stereochemistry , proton , hydrogen bond , photochemistry , biochemistry , molecule , organic chemistry , ion , physics , quantum mechanics , membrane , gene
Proton transfer reactions in bacteriorhodopsin were investigated by Fourier transform infrared spectroscopy, using a mutant protein in which Asp-96 was replaced by Asn-96. By comparison of the BR - K, BR - L, and BR - M difference spectra (BR indicating bacteriorhodopsin ground state and K, L, and M indicating photo-intermediates) of the wild-type protein with the corresponding difference spectra of the mutant protein, detailed insight into the functional role of this residue in the proton pump mechanism is obtained. Asp-96 is protonated in BR, as well as another aspartic residue, which is tentatively assigned to be Asp-115. Asp-96 is not affected in the primary photoreaction. During formation of the L intermediate it is subjected to a change in the H-bonding character of its carboxylic group, but no deprotonation occurs at this reaction step. Also, in the mutant protein a light-induced structural change of the protein interior near the Asn-96 residue is probed. The BR - M difference spectrum of the mutant protein lacks the negative carbonyl band at 1742 cm-1 of Asp-96 and in addition a positive band at about 1378 cm-1, which is most likely to be caused by the carboxylate vibration of Asp-96. This argues for a deprotonation of Asp-96 in the time range of the M intermediate during its photostationary accumulation. On the basis of these results, it is suggested that the point mutation does not induce a gross change of the protein structure, but a proton-binding site in the proton pathway from the cytoplasmic side to the Schiff base is lost.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here