
Chromatin configuration of the human CD2 gene locus during T-cell development.
Author(s) -
David Wotton,
Brian Flanagan,
Michael John Owen
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.11.4195
Subject(s) - chromatin , hypersensitive site , biology , dnase i hypersensitive site , gene , chia pet , deoxyribonuclease i , microbiology and biotechnology , gene expression , dna methylation , regulation of gene expression , regulatory sequence , locus control region , transcription factor , genetics , promoter , transcriptional regulation , chromatin remodeling , base sequence
To investigate the molecular basis for the tissue-specific expression of the human CD2 gene, its chromatin configuration was assessed by determining DNase I hypersensitivity and the degree of methylation during T-cell lineage commitment and development. Tissue-specific DNase I-hypersensitive sites were found within the 5' promoter region and a region 3' of the gene essential for gene expression. DNase I hypersensitivity of the 5' region correlated strictly with transcriptional activity, whereas hypersensitivity of the 3' region correlated with T-cell progenitor activity or lineage commitment but not necessarily with transcription. Hha I and Hpa II sites around the 5' and 3' regions were undermethylated in CD2-expressing T cells but were more extensively methylated in other cell types. These results define likely regulatory elements both upstream and downstream of the CD2 gene that control its tissue-specific expression. Further, they show that the 3' regulatory region adopts an open chromatin configuration prior to lineage commitment and during early stages of T-cell development before the CD2 gene is transcribed.