z-logo
open-access-imgOpen Access
Mechanism of inhibition of growth of 3T3-L1 fibroblasts and their differentiation to adipocytes by dehydroepiandrosterone and related steroids: role of glucose-6-phosphate dehydrogenase.
Author(s) -
Lisa M. Shantz,
Paul Talalay,
Gary Gordon
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.10.3852
Subject(s) - pentose phosphate pathway , dehydroepiandrosterone , glucose 6 phosphate dehydrogenase , dehydrogenase , endocrinology , chemistry , intracellular , medicine , cellular differentiation , steroid , biochemistry , phosphogluconate dehydrogenase , glycolysis , biology , enzyme , androgen , hormone , gene
Dehydroepiandrosterone (DHEA) and certain structural analogues block the differentiation of 3T3-L1 mouse embryo fibroblasts to adipocytes. These steroids also are potent uncompetitive inhibitors of mammalian glucose-6-phosphate dehydrogenases (G6PDs). We provide direct evidence that treatment of the 3T3-L1 cells with DHEA and its analogues results in intracellular inhibition of G6PD, which is associated with the block of differentiation: (i) Levels of 6-phosphogluconate and other products of the pentose phosphate pathway are decreased; (ii) the magnitude of these decreases depends on the potency of steroids as inhibitors of G6PD and on concentration and duration of exposure, and it is accompanied by a proportionate block of differentiation; (iii) in cells exposed to 16 alpha-bromoepiandrosterone (a more potent inhibitor of G6PD than DHEA) at concentrations that block differentiation, introduction of exogenous 6-phosphogluconate in liposomes raises the levels of 6-phosphogluconate and other products of the pentose phosphate pathway and partially relieves the steroid block of cell growth and differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here